Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37816045

RESUMO

BACKGROUND AIMS: Hepatocellular carcinoma (HCC) is closely associated with inflammation and immune modulation, and combined chemotherapy with other strategies is under extensive investigation to achieve better efficacy. HCC is accompanied by zinc deficiency. This study aims to understand how zinc could affect macrophage function and its application for HCC therapy. APPROACH RESULTS: Zn2+ and the zinc transporter 1 (ZNT1, SLC30A1) were markedly reduced in intrahepatic macrophages from HCC patients and mouse liver tumors. Lower ZNT1 expression was associated with higher IL-6 production and shorter survival time in HCC patients. Critically, ZNT1 regulated endosomal Zn2+ levels for endocytosis of TLR4 and PD-L1, thereby decreasing macrophage-induced inflammation and immunosuppression to protect from liver tumors. Myeloid-specific deletion of ZNT1 in mice increased chronic inflammation, liver fibrosis, tumor numbers, and size. Notably, zinc supplementation could reduce inflammation and surface PD-L1 expression in macrophages with the increased CD8+ T cell cytotoxicity, which synergized the anti-tumor efficacy of Sorafenib/Lenvatinib. CONCLUSIONS: Our study proposes a new concept that ZNT1 and zinc regulate endosome endocytosis to maintain surface receptors and zinc supplements might be synergized with chemotherapy to treat inflammation-associated tumors, especially those containing PD-L1+ myeloid cells.

2.
Cell Rep ; 42(5): 112489, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37167063

RESUMO

Upon recognizing danger signals produced by virally infected neurons, macrophages in the central nervous system (CNS) secrete multiple inflammatory cytokines to accelerate neuron apoptosis. The understanding is limited about which key effectors regulate macrophage-neuron crosstalk upon infection. We have used neurotropic-virus-infected murine models to identify that vascular endothelial growth factor receptor 3 (VEGFR-3) is upregulated in the CNS macrophages and that virally infected neurons secrete the ligand VEGF-C. When cultured with VEGF-C-containing supernatants from virally infected neurons, VEGFR-3+ macrophages suppress tumor necrosis factor α (TNF-α) secretion to reduce neuron apoptosis. Vegfr-3ΔLBD/ΔLBD (deletion of ligand-binding domain in myeloid cells) mice or mice treated with the VEGFR-3 kinase inhibitor exacerbate the severity of encephalitis, TNF-α production, and neuron apoptosis post Japanese encephalitis virus (JEV) infection. Activating VEGFR-3 or blocking TNF-α can reduce encephalitis and neuronal damage upon JEV infection. Altogether, we show that the inducible VEGF-C/VEGFR-3 module generates protective crosstalk between neurons and macrophages to alleviate CNS viral infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Ligantes , Fator A de Crescimento do Endotélio Vascular/metabolismo , Encefalite Japonesa/metabolismo , Encefalite Japonesa/patologia , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Neurônios/metabolismo , Macrófagos/metabolismo
3.
Front Immunol ; 13: 725595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371096

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common digestive system cancers (DSCs) with a poor prognosis. Zinc-regulated transporter (ZRT)/iron-regulated transporter (IRT) like protein transporters (ZIPs) encode membrane transport proteins, which are responsible for the absorption of zinc and play important roles in the pathogenesis of various human cancers. Tumor-associated macrophages (TAMs) are important participants in the regulation of tumor microenvironment and the development of HCC. Individual role of each ZIP involved in hepatocarcinogenesis remains elusive. In this study, the transcription patterns of ZIPs in the DSCs were screened firstly through GEPIA2 database. Interestingly, the analysis of the DSCs data showed the distinct mRNA levels of ZIPs between DSCs tissues and healthy controls. Notably, the transcription levels of ZIP2, ZIP5, ZIP8, ZIP9 and ZIP14 were decreased significantly in the tissues of human liver cancer compared to paracarcinoma liver tissues. To further confirm the mRNA transcriptional changes of Zips in HCC, N-Nitrosodiethylamine (DEN) combined with carbon tetrachloride (CCl4) inducing mouse model of HCC were established. Consistently, the mRNA levels of Zip2, Zip9, and Zip14 in liver tissues of HCC induced mice were also decreased compared with the healthy controls. In addition, mouse peritoneal elucidated macrophages (PEMs)-derived M1/M2 macrophages in vitro, as well as human patients of HCC-derived TAMs, were used to examine the transcription levels of ZIPs. Our results showed that both Zip2 and Zip9 were up-regulated in M2-polarized macrophages. Zip2 transcript was also up-regulated M1-polarized macrophages, but Zip9 was slightly down-regulated. TAMs generated from human liver cancer tissues also displayed a decrease in ZIP9 transcription compared to paracarcinoma tissues. To further explore the role of Zip9 in M1/M2 polarization, the siRNA knockdown results revealed that Zip9, but not Zip2, could promote M2 macrophage polarization and impair M1 macrophage polarization. Mechanistically, Zip9 enhances phosphorylated STAT6 to promote M2 macrophage polarization but suppresses the phosphorylation of IκBα/ß to inhibit M1 macrophage polarization. Together, our results indicate that ZIP9 may involve in macrophages polarity in HCC development and may be a potent new biomarker for the diagnosis of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , Camundongos , RNA Mensageiro/metabolismo , Microambiente Tumoral/genética , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...